Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 106, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439081

RESUMO

BACKGROUND: Although whole-genome sequencing (WGS) is the preferred genotyping method for most genomic analyses, limitations are often experienced when studying genomes characterized by a high percentage of repetitive elements, high linkage, and recombination deserts. The Asian tiger mosquito (Aedes albopictus), for example, has a genome comprising up to 72% repetitive elements, and therefore we set out to develop a single-nucleotide polymorphism (SNP) chip to be more cost-effective. Aedes albopictus is an invasive species originating from Southeast Asia that has recently spread around the world and is a vector for many human diseases. Developing an accessible genotyping platform is essential in advancing biological control methods and understanding the population dynamics of this pest species, with significant implications for public health. METHODS: We designed a SNP chip for Ae. albopictus (Aealbo chip) based on approximately 2.7 million SNPs identified using WGS data from 819 worldwide samples. We validated the chip using laboratory single-pair crosses, comparing technical replicates, and comparing genotypes of samples genotyped by WGS and the SNP chip. We then used the chip for a population genomic analysis of 237 samples from 28 sites in the native range to evaluate its usefulness in describing patterns of genomic variation and tracing the origins of invasions. RESULTS: Probes on the Aealbo chip targeted 175,396 SNPs in coding and non-coding regions across all three chromosomes, with a density of 102 SNPs per 1 Mb window, and at least one SNP in each of the 17,461 protein-coding genes. Overall, 70% of the probes captured the genetic variation. Segregation analysis found that 98% of the SNPs followed expectations of single-copy Mendelian genes. Comparisons with WGS indicated that sites with genotype disagreements were mostly heterozygotes at loci with WGS read depth < 20, while there was near complete agreement with WGS read depths > 20, indicating that the chip more accurately detects heterozygotes than low-coverage WGS. Sample sizes did not affect the accuracy of the SNP chip genotype calls. Ancestry analyses identified four to five genetic clusters in the native range with various levels of admixture. CONCLUSIONS: The Aealbo chip is highly accurate, is concordant with genotypes from WGS with high sequence coverage, and may be more accurate than low-coverage WGS.


Assuntos
Aedes , Mosquitos Vetores , Humanos , Animais , Genótipo , Mosquitos Vetores/genética , Heterozigoto , Aedes/genética
2.
An Acad Bras Cienc ; 95(suppl 2): e20220956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198397

RESUMO

Malaria is the most important parasitic disease worldwide. In 2019, more than 679,441 cases of malaria were reported in the American region. During this study, Argentina was in malaria pre-elimination autochthonous transmission phase with the aim of being declared as malaria-free country. The aim of this work was to assess the influence of remote sensing spectral indices (NDVI, NDWI) and climatic variables (temperature, relative humidity and precipitation) on the distribution and abundance of Anopheles mosquitoes, in four localities with different degrees of anthropogenic disturbance and with previous malaria cases records located , in a historical malarious area in northeastern of Argentina. Between June 2012 and July 2014, mosquitoes were collected. We collected 535 Anopheles adult mosquitoes. Anopheles strodei s.l. was the most abundant species. The greatest richness, diversity and abundance of species were registered in wild and semi-urban environments. The abundance of Anopheles presented a negative association with relative humidity and mean temperature, but positive with mean maximum temperature. The most important variables determining Anopheles total abundance and distribution were NDWI Index and distance to vegetation. The abundance of An. strodei s.l., was positive associated with water areas whereas the NDVI Index was negatively associated.


Assuntos
Anopheles , Malária , Animais , Argentina , Temperatura , Água
3.
Sci Data ; 10(1): 460, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452060

RESUMO

Mayaro Virus (MAYV) is an emerging health threat in the Americas that can cause febrile illness as well as debilitating arthralgia or arthritis. To better understand the geographic distribution of MAYV risk, we developed a georeferenced database of MAYV occurrence based on peer-reviewed literature and unpublished reports. Here we present this compendium, which includes both point and polygon locations linked to occurrence data documented from its discovery in 1954 until 2022. We describe all methods used to develop the database including data collection, georeferencing, management and quality-control. We also describe a customized grading system used to assess the quality of each study included in our review. The result is a comprehensive, evidence-graded database of confirmed MAYV occurrence in humans, non-human animals, and arthropods to-date, containing 262 geo-positioned occurrences in total. This database - which can be updated over time - may be useful for local spill-over risk assessment, epidemiological modelling to understand key transmission dynamics and drivers of MAYV spread, as well as identification of major surveillance gaps.


Assuntos
Alphavirus , Animais , América , Artrópodes , Bases de Dados Factuais , Humanos
5.
Environ Health Perspect ; 131(5): 57008, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37224070

RESUMO

BACKGROUND: Climate change is an important driver of the increased spread of dengue from tropical and subtropical regions to temperate areas around the world. Climate variables such as temperature and precipitation influence the dengue vector's biology, physiology, abundance, and life cycle. Thus, an analysis is needed of changes in climate change and their possible relationships with dengue incidence and the growing occurrence of epidemics recorded in recent decades. OBJECTIVES: This study aimed to assess the increasing incidence of dengue driven by climate change at the southern limits of dengue virus transmission in South America. METHODS: We analyzed the evolution of climatological, epidemiological, and biological variables by comparing a period of time without the presence of dengue cases (1976-1997) to a more recent period of time in which dengue cases and important outbreaks occurred (1998-2020). In our analysis, we consider climate variables associated with temperature and precipitation, epidemiological variables such as the number of reported dengue cases and incidence of dengue, and biological variables such as the optimal temperature ranges for transmission of dengue vector. RESULTS: The presence of dengue cases and epidemic outbreaks are observed to be consistent with positive trends in temperature and anomalies from long-term means. Dengue cases do not seem to be associated with precipitation trends and anomalies. The number of days with optimal temperatures for dengue transmission increased from the period without dengue cases to the period with occurrences of dengue cases. The number of months with optimal transmission temperatures also increased between periods but to a lesser extent. CONCLUSIONS: The higher incidence of dengue virus and its expansion to different regions of Argentina seem to be associated with temperature increases in the country during the past two decades. The active surveillance of both the vector and associated arboviruses, together with continued meteorological data collection, will facilitate the assessment and prediction of future epidemics that use trends in the accelerated changes in climate. Such surveillance should go hand in hand with efforts to improve the understanding of the mechanisms driving the geographic expansion of dengue and other arboviruses beyond the current limits. https://doi.org/10.1289/EHP11616.


Assuntos
Dengue , Surtos de Doenças , Humanos , Argentina/epidemiologia , Incidência , Mudança Climática , Dengue/epidemiologia
6.
Med Vet Entomol ; 37(1): 27-36, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36070184

RESUMO

Earth observation environmental features measured through remote sensing and models of vector mosquitoes species Aedes aegypti and Ae. albopictus provide an advancement with regards to dengue risk in urban environments of subtropical areas of Argentina. The authors aim to estimate the effect of landscape coverage and spectral indices (Normalized Difference Vegetation Index [NDVI], Normalized Difference Water Index [NDWI] and Normalized Difference Built-up Index [NDBI]) on the larvae abundance of Ae. aegypti and Ae. albopictus in Eldorado, Misiones, Argentina using remote satellite sensors. Larvae of these species were collected monthly (June 2016 to April 2018), in four environments: tire repair shops, cemeteries, dwellings and an urban natural park. The proportion of landscape coverage (water, urban areas, bare soil, low vegetation and high vegetation) was determined from the supervised classification of Sentinel-2 images and spectral indices, calculated. The authors developed spatial models of both vector species by generalized linear mixed models. The model's results showed that Ae. aegypti larvae abundance was better modelled by NDVI minimum values, NDBI maximum values and the interaction between them. For Ae. albopictus proportion of bare soil, low vegetation and the interaction between both variables explained better the abundance.


Assuntos
Aedes , Dengue , Animais , Mosquitos Vetores , Argentina/epidemiologia , Solo , Larva , Dengue/epidemiologia , Dengue/veterinária
7.
J Med Entomol ; 59(2): 525-536, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-34951445

RESUMO

In the southern coast of Mar Chiquita Lake, central Argentina, mosquitoes affect public health and community livelihood, since they transmit pathogens to human beings causing diseases such as malaria, filariasis, encephalitis, yellow fever, and dengue, among others, and have a negative effect on cattle farming as well. To characterize the structure of the mosquito assemblage of the region, we determined the species composition and diversity, the temporal distribution of different species, and the patterns of species richness, abundance, and diversity across seasons. We collected adult mosquitoes over a two-year period (October 2004-September 2006) by means of CDC light traps baited with CO2 from 18:00 to 08:00 h during the warm season (October-April) and from 12:00 h to 18:00 h in the cold season (May-September). A total of 71,501 individuals from 30 species were collected, with Culex Linnaeus and Aedes Meigen genera representing more than 98% of collected specimens (61.5% and 37.3%, respectively). The higher values of richness and abundance of Culicidae were registered in warm seasons compared to cold seasons. Chao1 estimates suggested that more than 90% of the species were detected in all seasons. Mosquito abundance distribution fit the logarithmic series and log-normal models. Aedes albifasciatus (Macquart), Ae. scapularis (Rondani), Culex interfor Dyar, Cx. saltanensis Dyar, and Cx. dolosus (Lynch Arribálzaga), vectors incriminated in arbovirus transmission, were abundant year-round, with Cx. saltanensis and Cx. dolosus most prevalent in cold seasons. Further studies are needed to assess the role of these species in arbovirus transmission in this region of central Argentina.


Assuntos
Aedes , Culex , Culicidae , Animais , Argentina , Bovinos , Lagos , Mosquitos Vetores , Estações do Ano
8.
PLoS Negl Trop Dis ; 15(12): e0010016, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898602

RESUMO

Improving our understanding of Mayaro virus (MAYV) ecology is critical to guide surveillance and risk assessment. We conducted a PRISMA-adherent systematic review of the published and grey literature to identify potential arthropod vectors and non-human animal reservoirs of MAYV. We searched PubMed/MEDLINE, Embase, Web of Science, SciELO and grey-literature sources including PAHO databases and dissertation repositories. Studies were included if they assessed MAYV virological/immunological measured occurrence in field-caught, domestic, or sentinel animals or in field-caught arthropods. We conducted an animal seroprevalence meta-analysis using a random effects model. We compiled granular georeferenced maps of non-human MAYV occurrence and graded the quality of the studies using a customized framework. Overall, 57 studies were eligible out of 1523 screened, published between the years 1961 and 2020. Seventeen studies reported MAYV positivity in wild mammals, birds, or reptiles and five studies reported MAYV positivity in domestic animals. MAYV positivity was reported in 12 orders of wild-caught vertebrates, most frequently in the orders Charadriiformes and Primate. Sixteen studies detected MAYV in wild-caught mosquito genera including Haemagogus, Aedes, Culex, Psorophora, Coquillettidia, and Sabethes. Vertebrate animals or arthropods with MAYV were detected in Brazil, Panama, Peru, French Guiana, Colombia, Trinidad, Venezuela, Argentina, and Paraguay. Among non-human vertebrates, the Primate order had the highest pooled seroprevalence at 13.1% (95% CI: 4.3-25.1%). From the three most studied primate genera we found the highest seroprevalence was in Alouatta (32.2%, 95% CI: 0.0-79.2%), followed by Callithrix (17.8%, 95% CI: 8.6-28.5%), and Cebus/Sapajus (3.7%, 95% CI: 0.0-11.1%). We further found that MAYV occurs in a wide range of vectors beyond Haemagogus spp. The quality of evidence behind these findings was variable and prompts calls for standardization of reporting of arbovirus occurrence. These findings support further risk emergence prediction, guide field surveillance efforts, and prompt further in-vivo studies to better define the ecological drivers of MAYV maintenance and potential for emergence.


Assuntos
Infecções por Alphavirus/veterinária , Infecções por Alphavirus/virologia , Alphavirus/fisiologia , Vetores Artrópodes/virologia , Reservatórios de Doenças/virologia , Mosquitos Vetores/virologia , Alphavirus/genética , Infecções por Alphavirus/transmissão , Animais , Vetores Artrópodes/fisiologia , Aves/virologia , Humanos , Mamíferos/virologia , Mosquitos Vetores/fisiologia , Primatas/virologia , Répteis/virologia
9.
An Acad Bras Cienc ; 93(suppl 3): e20191278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34730738

RESUMO

We evaluated species richness, abundance, alpha diversity, and true diversity of Phlebotominae sand flies temporal changes in domiciles within the northern Argentina city of Corrientes. A total of 16 sampling nights were conducted seasonally throughout the years 2012-2014 through light traps supplemented with CO2. Meteorological and remote sensing environmental factors were used to assessed for vectors implications in disease transmission through Generalized Mixt Models. Lutzomyia longipalpis was the most abundant and common species, followed by Nyssomyia neivai and Migonemyia migonei. Lutzomyia longipalpis was more abundant in urban areas, Ny. neivai was associated with vegetation in periurban areas, both were found all sampling years with higher abundance during the rainy season. Positive association of Lu. longipalpis with precipitation and relative humidity and negative association with temperature were observed. Models showed humidity and vegetation as making effects on Lu. longipalpis abundance. Precipitation was significant for Mg. migonei models, with higher abundance in periurban and periurban-rural environments. For Ny. neivai models, relative humidity was the most important variable, followed by precipitation frequency. Our findings led to identify high risk areas and develop predictive models. These are useful for public health stakeholders giving tolls to optimized resources aim to prevent leshmaniasis transmission on the area.


Assuntos
Psychodidae , Animais , Argentina , Brasil , Cidades , Clima , Umidade , Insetos Vetores , Chuva , Temperatura
10.
An Acad Bras Cienc ; 93(4): e20191178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495197

RESUMO

To better understand the dispersion strategies of Triatoma infestans (Klug) (Hemiptera: Reduviidae, Triatominae), we evaluated the spatial effect of infested peridomicile and density vegetation cover in a historically endemic area for Chagas disease. The study was conducted in rural houses of the northwest of Córdoba province, Argentine, during 2012-2013. Active search of triatomines were made in domicile and peridomicile habitats. To characterize vegetation coverage, a thematic map was obtained considering five types of vegetation cover (closed/open forest, closed/open shrubland and cultural land). From each house we extracted the area of vegetation coverage, housing density and infested peridomiciles density. We used generalized linear models to evaluate the effect of these variables on the occurrence of infested peridomicile. According to our results, the probability of a peridomicile to be infested increases by 1.34 (95%CI [0.98; 1.90]) times more when peridomicile structures are in environments with higher housing density and by 1.25 (95%CI [0.84; 1.88]) more times when houses are surrounded by open shrublands. Among the multiple ecological determinants of peridomestic infestation, the influence of vegetation cover has been poorly studied. In this study we discussed the effect of the vegetation as a potential modulator of the dispersion strategies of T. infestans.


Assuntos
Doença de Chagas , Triatoma , Animais , Argentina , Habitação , Humanos , Insetos Vetores , População Rural
11.
Sci Data ; 8(1): 134, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016998

RESUMO

Dengue virus (DENV) transmission occurs primarily in tropical and subtropical climates, but within the last decade it has extended to temperate regions. Santa Fe, a temperate province in Argentina, has experienced an increase in dengue cases and virus circulation since 2009, with the recent 2020 outbreak being the largest in the province to date. The aim of this work is to describe spatio-temporal fluctuations of dengue cases from 2009 to 2020 in Santa Fe Province. The data presented in this work provide a detailed description of DENV transmission for Santa Fe Province by department. These data are useful to assist in investigating drivers of dengue emergence in Santa Fe Province and for developing a better understanding of the drivers and the impacts of ongoing dengue emergence in temperate regions across the world. This work provides data useful for future studies including those investigating socio-ecological, climatic, and environmental factors associated with DENV transmission, as well as those investigating other variables related to the biology and the ecology of vector-borne diseases.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Dengue/epidemiologia , Dengue/transmissão , Surtos de Doenças , Aedes/virologia , Animais , Argentina/epidemiologia , Vírus da Dengue/isolamento & purificação , Humanos , Mosquitos Vetores/virologia
12.
Acta Trop ; 216: 105744, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33189713

RESUMO

Environmental variables related to vegetation and weather are some of the most influential factors that impacting Aedes (Stegomya) aegypti, a mosquito vector of dengue, chikungunya and Zika viruses. In this paper, we aim to develop temporal predictive models for Ae. aegypti oviposition activity utilizing vegetation and meteorological variables as predictors in Córdoba city (Argentina). Eggs were collected using ovitraps placed throughout the city from 2009 to 2012 that were replaced weekly. Temporal generalized linear mixed models were developed with negative binomial distributions of errors that model average number of eggs collected weekly as a function of vegetation and meteorological variables with time lags. The best model included a vegetation index, vapor pressure of water, precipitation and photoperiod. With each unit of increment in vegetation index per week the average number of eggs increased by 1.71 in the third week. Furthermore, each millimeter increase of accumulated rain during 4 weeks was associated with a decrease of 0.668 in the average number of eggs found in the following week. This negative effect of precipitation could occur during abundant rainfalls that fill containers completely, thereby depriving females of oviposition sites and leading them to search for other suitable breeding sites. Furthermore, the average number of eggs increased with the photoperiod at low values of mean vapor pressure; however the average number of eggs decreased at high values of mean vapor pressure, and the positive relationship between the response variable and mean vapor pressure was stronger at low values of photoperiod. Additionally, minimum temperature was associated positively with oviposition activity and that low minimum temperatures could be a limiting factor in Ae. aegypti oviposition activity. Our results emphasize the important role that climatic variables such as temperature, precipitation, and vapor pressure play in Ae. aegypti oviposition activity and how these variables along with vegetation indices can be used to inform predictive temporal models of Ae. aegypti population dynamics that can be used for informing mosquito population control and arbovirus mitigation strategies.


Assuntos
Aedes/fisiologia , Modelos Biológicos , Oviposição , Fotoperíodo , Animais , Argentina , Feminino , Conceitos Meteorológicos , Óvulo , Dinâmica Populacional , Chuva , Fatores de Tempo , Pressão de Vapor
13.
Heliyon ; 6(9): e04858, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32954035

RESUMO

BACKGROUND: Argentina is located at the southern temperate range of arboviral transmission by the mosquito Aedes aegypti and has experienced a rapid increase in disease transmission in recent years. Here we present findings from an entomological surveillance study that began in Córdoba, Argentina, following the emergence of dengue in 2009. METHODS: From 2009 to 2017, larval surveys were conducted monthly, from November to May, in 600 randomly selected households distributed across the city. From 2009 to 2013, ovitraps (n = 177) were sampled weekly to monitor the oviposition activity of Ae. aegypti. We explored seasonal and interannual dynamics of entomological variables and dengue transmission. Cross correlation analysis was used to identify significant lag periods. RESULTS: Aedes aegypti were detected over the entire study period, and abundance peaked during the summer months (January to March). We identified a considerable increase in the proportion of homes with juvenile Ae. aegypti over the study period (from 5.7% of homes in 2009-10 to 15.4% of homes in 2016-17). Aedes aegypti eggs per ovitrap and larval abundance were positively associated with temperature in the same month. Autochthonous dengue transmission peaked in April, following a peak in imported dengue cases in March; autochthonous dengue was not positively associated with vector or climate variables. CONCLUSIONS: This longitudinal study provides insights into the complex dynamics of arbovirus transmission and vector populations in a temperate region of arbovirus emergence. Our findings suggest that Córdoba is well suited for arbovirus disease transmission, given the stable and abundant vector populations. Further studies are needed to better understand the role of regional human movement.

14.
Curr Opin Virol ; 40: 41-47, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32569752

RESUMO

Climate change is leading to increases in global temperatures and erratic precipitation patterns, both of which are contributing to the expansion of mosquito-borne arboviruses and the populations of the mosquitos that vector them. Herein, we review recent evidence of emergence and expansion of arboviruses transmitted by Aedes mosquitos that has been driven in part by environmental changes. We present as a case study of recent work from Córdoba, Argentina, where dengue has been actively emerging in the past decade. We review recent empirical and modeling studies that aim to understand the impact of climate on future expansion of arboviruses, and we highlight gaps in empirical studies linking climate to arbovirus transmission at regional levels.


Assuntos
Aedes/fisiologia , Infecções por Arbovirus/transmissão , Arbovírus/fisiologia , Mosquitos Vetores/fisiologia , Aedes/virologia , Animais , Infecções por Arbovirus/virologia , Arbovírus/genética , Mudança Climática , Humanos , Mosquitos Vetores/virologia
15.
Acta Trop ; 210: 105576, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32511970

RESUMO

We analyses the relationship between landscape and environmental variables estimated from high-resolution satellite images with the temporal variation of the abundance of Lutzomyia longipalpis and Migonemyia migonei, vectors of leishmaniasis, in Corrientes city. At 8 collection sites, 14 samples were conducted between March 2012 to February 2014. Proportion of land cover classes derived from high resolution satellite images as: water, bare soil, urban areas, low vegetation and high vegetation, as well as average, maximum and minimum values of Normalized Difference Vegetation Index and Normalized Difference Water Index) in buffer areas of 50 m, 100 m and 150 m were used to characterize and identify suitable environmental conditions for the development of sand flies through Generalized Linear Mixed Models. The most frequently collected species during the sampling period was Lu. longipalpis and followed by Mg. migonei. The models showed that high Lu. longipalpis abundance were related to low proportion of high vegetation coverage, while a negative association was among Mg. migonei abundance and with values of Normalized Difference Water Index and with the interaction between urban areas and minimum values of Normalized Difference Water Index, and a positive association with the interaction between low vegetation and average values of Normalized Difference Water Index.


Assuntos
Insetos Vetores , Leishmaniose/transmissão , Psychodidae , Animais , Argentina , Demografia
16.
Sci Data ; 6(1): 276, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754110

RESUMO

The distribution of arbovirus disease transmission is expanding from the tropics and subtropics into temperate regions worldwide. The temperate city of Córdoba, Argentina has been experiencing the emergence of dengue virus, transmitted by the mosquito Aedes aegypti, since 2009, when autochthonous transmission of the virus was first recorded in the city. The aim of this work is to characterize the emergence of dengue and related arboviruses (Zika and chikungunya) in Córdoba since 2009. Herein, we present a data set with all known information about transmission of dengue, Zika, and chikungunya viruses in Córdoba, Argentina from 2009-2018, including what information is known of dengue virus (DENV) serotypes in circulation and origins of imported cases. The data presented in this work will assist researchers in investigating drivers of arbovirus emergence and transmission in Córdoba, Argentina and contribute to a better understanding of the global problem of the expanding distribution of arbovirus disease transmission.


Assuntos
Febre de Chikungunya/transmissão , Dengue/transmissão , Infecção por Zika virus/transmissão , Aedes/virologia , Animais , Arbovírus , Argentina/epidemiologia , Febre de Chikungunya/epidemiologia , Vírus Chikungunya , Cidades , Dengue/epidemiologia , Vírus da Dengue , Humanos , Zika virus , Infecção por Zika virus/epidemiologia
17.
J Vector Ecol ; 40(1): 36-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26047182

RESUMO

Distribution and abundance of disease vectors are directly related to climatic conditions and environmental changes. Remote sensing data have been used for monitoring environmental conditions influencing spatial patterns of vector-borne diseases. The aim of this study was to analyze the effect of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic factors (temperature, humidity, wind velocity, and accumulated rainfall) on the distribution and abundance of Anopheles species in northwestern Argentina using Poisson regression analyses. Samples were collected from December, 2001 to December, 2005 at three localities, Aguas Blancas, El Oculto and San Ramón de la Nueva Orán. We collected 11,206 adult Anopheles species, with the major abundance observed at El Oculto (59.11%), followed by Aguas Blancas (22.10%) and San Ramón de la Nueva Orán (18.79%). Anopheles pseudopunctipennis was the most abundant species at El Oculto, Anopheles argyritarsis predominated in Aguas Blancas, and Anopheles strodei in San Ramón de la Nueva Orán. Samples were collected throughout the sampling period, with the highest peaks during the spring seasons. LST and mean temperature appear to be the most important variables determining the distribution patterns and major abundance of An. pseudopunctipennis and An. argyritarsis within malarious areas.


Assuntos
Anopheles/fisiologia , Monitoramento Ambiental/métodos , Animais , Anopheles/parasitologia , Argentina , Clima , Feminino , Insetos Vetores , Malária/transmissão , Dinâmica Populacional , Análise de Regressão , Tecnologia de Sensoriamento Remoto , Estações do Ano , Temperatura
18.
PLoS One ; 10(5): e0127820, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25993415

RESUMO

This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10 °C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R(2)). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance.


Assuntos
Aedes/fisiologia , Insetos Vetores/fisiologia , Oviposição/fisiologia , Tempo (Meteorologia) , Animais , Argentina , Cidades , Dengue/transmissão , Geografia , Estações do Ano , Estatísticas não Paramétricas , Fatores de Tempo
19.
Acta Trop ; 146: 53-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25792419

RESUMO

In Argentina the St. Louis Encephalitis virus (SLEV) is an endemic and widely distributed pathogen transmitted by the cosmopolitan mosquito Culex quinquefasciatus. During two outbreaks in Córdoba city, in 2005 and 2010, Culex interfor was also found infected, but its role as vector of SLEV is poorly known. This mosquito species is distributed from central Argentina to southern Brazil. The primary aim of this study was to analyze the population dynamic of Cx. interfor and Cx. quinquefasciatus in three different environments (urban, suburban and non-urban) in relation to remotely sensed environmental data for vegetation (NDVI and NDWI) and temperature (brightness temperature). Cx. quinquefasciatus and Cx. interfor were found at the three sampled sites, being both the most abundant Culex species, with peaks in early and midsummer. Temporal distribution patterns of both mosquito species were highly correlated in a non-urban area of high SLEV risk transmission. Cx. quinquefasciatus and Cx. interfor were associated with the most urbanized site and the non-urban environment, respectively; high significant correlations were detected between vegetation indices and abundance of both mosquito species confirming these associations. These data provide a foundation for building density maps of these two SLEV mosquito vectors using remotely sensed data to help inform vector control programs.


Assuntos
Culex/virologia , Encefalite de St. Louis/epidemiologia , Encefalite de St. Louis/transmissão , Monitoramento Ambiental/métodos , Insetos Vetores/virologia , Tecnologia de Sensoriamento Remoto , Animais , Argentina , Vírus da Encefalite de St. Louis , Meio Ambiente , Dinâmica Populacional , População Rural , População Suburbana , População Urbana
20.
Mem Inst Oswaldo Cruz ; 108(6): 772-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24037200

RESUMO

The aims of this study were to characterise the ground-level larval habitats of the mosquito Culex quinquefasciatus, to determine the relationships between habitat characteristics and larval abundance and to examine seasonal larval-stage variations in Córdoba city. Every two weeks for two years, 15 larval habitats (natural and artificial water bodies, including shallow wells, drains, retention ponds, canals and ditches) were visited and sampled for larval mosquitoes. Data regarding the water depth, temperature and pH, permanence, the presence of aquatic vegetation and the density of collected mosquito larvae were recorded. Data on the average air temperatures and accumulated precipitation during the 15 days prior to each sampling date were also obtained. Cx. quinquefasciatus larvae were collected throughout the study period and were generally most abundant in the summer season. Generalised linear mixed models indicated the average air temperature and presence of dicotyledonous aquatic vegetation as variables that served as important predictors of larval densities. Additionally, permanent breeding sites supported high larval densities. In Córdoba city and possibly in other highly populated cities at the same latitude with the same environmental conditions, control programs should focus on permanent larval habitats with aquatic vegetation during the early spring, when the Cx. quinquefasciatus population begins to increase.


Assuntos
Distribuição Animal/fisiologia , Culex/crescimento & desenvolvimento , Ecossistema , Estações do Ano , Animais , Organismos Aquáticos/fisiologia , Argentina , Larva , Magnoliopsida , Conceitos Meteorológicos , Controle de Mosquitos/métodos , Crescimento Demográfico , Água/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...